Email
Call
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
Contact
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
  • Contact

Bridging Integrator-1 protein loss in Alzheimer’s disease promotes synaptic tau accumulation and disrupts tau release

Posted on 16/07/2021

Authors: Elizabeth B Glennon, Dawn H W Lau, Rebecca M C Gabriele, Matthew F Taylor, Claire Troakes, Sarah Opie-Martin, Christina Elliott, Richard Killick, Diane P Hanger, Beatriz G Perez-Nievas, Wendy Noble

Polymorphisms associated with BIN1 (bridging integrator 1) confer the second greatest risk for developing late-onset Alzheimer’s disease. The biological consequences of this genetic variation are not fully understood; however, BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer’s disease, tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine whether alterations in BIN1 and tau in Alzheimer’s disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase the risk of developing Alzheimer’s disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer’s disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and showed that the phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer’s disease disrupts tau–BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer’s disease brain causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase the risk of Alzheimer’s disease by disrupting cytoplasmic tau–BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure and reducing the release of physiological forms of tau to disrupt tau function.

doi: 10.1093/braincomms/fcaa011

Previous Post
Mechanochemical symmetry breaking during morphogenesis of lateral-line sensory organs
Next Post
Interferon-γ signaling in human iPSC–derived neurons recapitulates neurodevelopmental disorder phenotypes

Recent Posts

  • A new experimental platform facilitatesassessment of the transcriptional and chromatin landscapes of aging yeast 20/08/2021
  • Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles 16/07/2021
  • Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria 16/07/2021
  • Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions 16/07/2021
  • Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments 16/07/2021

Categories

  • Cell Biology (18)
  • Colloidal Dynamics (1)
  • Developmental Biology (10)
  • Genomics and Proteomics (3)
  • Neuroscience (3)
  • Physiology (2)

Contact us

Get in touch

sales@visitech.co.uk
+44 (0)191 516 6255
VisiTech International Ltd

Unit 92
Silverbriar
Sunderland Enterprise Park (East)
Sunderland
SR5 2TQ
UK

Follow us @visitech_uk

Send an Enquiry

Fill out this field
Please enter a valid email address.
Fill out this field
Fill out this field

© 2022 VisiTech International. Website from dodio.