Email
Call
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
Contact
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
  • Contact

CC2D1B Coordinates ESCRT-III Activity during the Mitotic Reformation of the Nuclear Envelope

Posted on 16/07/2021
No Comments

Authors: Leandro N. Ventimiglia, Miguel Angel Cuesta-Geijo, Nicolas Martinelli, …, Jeremy G. Carlton, Winfried Weissenhorn, Juan Martin-Serrano

The coordinated reformation of the nuclear envelope (NE) after mitosis re-establishes the structural integrity and the functionality of the nuclear compartment. The endosomal sorting complex required for transport (ESCRT) machinery, a membrane remodeling pathway that is highly conserved in eukaryotes, has been recently involved in NE resealing by mediating the annular fusion of the nuclear membrane (NM). We show here that CC2D1B, a regulator of ESCRT polymerization, is required to re-establish the nuclear compartmentalization by coordinating endoplasmic reticulum (ER) membrane deposition around chromatin disks with ESCRT-III recruitment to the reforming NE. Accordingly, CC2D1B determines the spatiotemporal distribution of the CHMP7-ESCRT-III axis during NE reformation. Crucially, in CC2D1B-depleted cells, ESCRT activity is uncoupled from Spastin-mediated severing of spindle microtubules, resulting in persisting microtubules that compromise nuclear morphology. Therefore, we reveal CC2D1B as an essential regulatory factor that licenses the formation of ESCRT-III polymers to ensure the orderly reformation of the NE.

doi: https://doi.org/10.1016/j.devcel.2018.11.012

Previous Post
Dynamic nanoscale morphology of the ER surveyed by STED microscopy
Next Post
Cadherin preserves cohesion across involuting tissues during C. elegans neurulation

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.
You need to agree with the terms to proceed

Recent Posts

  • A new experimental platform facilitatesassessment of the transcriptional and chromatin landscapes of aging yeast 20/08/2021
  • Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles 16/07/2021
  • Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria 16/07/2021
  • Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions 16/07/2021
  • Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments 16/07/2021

Categories

  • Cell Biology (18)
  • Colloidal Dynamics (1)
  • Developmental Biology (10)
  • Genomics and Proteomics (3)
  • Neuroscience (3)
  • Physiology (2)

Contact us

Get in touch

sales@visitech.co.uk
+44 (0)191 516 6255
VisiTech International Ltd

Unit 92
Silverbriar
Sunderland Enterprise Park (East)
Sunderland
SR5 2TQ
UK

Follow us @visitech_uk

Send an Enquiry

Fill out this field
Please enter a valid email address.
Fill out this field
Fill out this field

© 2022 VisiTech International. Website from dodio.