Email
Call
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
Contact
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
  • Contact

Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in Systemic Lupus Erythematosus

Posted on 16/07/2021

Authors: Christopher A. Odhams, Amy L. Roberts, Susan K. Vester, Carolina S. T. Duarte, Charlie T. Beales, Alexander J. Clarke, Sonja Lindinger, Samuel J. Daffern, Antonino Zito, Lingyan Chen, Leonardo L. Jones, Lora Boteva, David L. Morris, Kerrin S. Small, Michelle M. A. Fernando, Deborah S. Cunninghame Graham & Timothy J. Vyse

Systemic lupus erythematosus (SLE) is an autoimmune disease, characterised by increased expression of type I interferon (IFN)-regulated genes and a striking sex imbalance towards females. Through combined genetic, in silico, in vitro, and ex vivo approaches, we define CXorf21, a gene of hitherto unknown function, which escapes X-chromosome inactivation, as a candidate underlying the Xp21.2 SLE association. We demonstrate that CXorf21 is an IFN-response gene and that the sexual dimorphism in expression is magnified by immunological challenge. Fine-mapping reveals a single haplotype as a potential causal cis-eQTL for CXorf21. We propose that expression is amplified through modification of promoter and 3′-UTR chromatin interactions. Finally, we show that the CXORF21 protein colocalises with TLR7, a pathway implicated in SLE pathogenesis. Our study reveals modulation in gene expression affected by the combination of two hallmarks of SLE: CXorf21 expression increases in a both an IFN-inducible and sex-specific manner.

doi: https://doi.org/10.1038/s41467-019-10106-2

Previous Post
Staphylococcus aureus Impairs the Function of and Kills Human Dendritic Cells via the LukAB Toxin
Next Post
Mechanochemical symmetry breaking during morphogenesis of lateral-line sensory organs

Recent Posts

  • A new experimental platform facilitatesassessment of the transcriptional and chromatin landscapes of aging yeast 20/08/2021
  • Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles 16/07/2021
  • Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria 16/07/2021
  • Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions 16/07/2021
  • Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments 16/07/2021

Categories

  • Cell Biology (18)
  • Colloidal Dynamics (1)
  • Developmental Biology (10)
  • Genomics and Proteomics (3)
  • Neuroscience (3)
  • Physiology (2)

Contact us

Get in touch

sales@visitech.co.uk
+44 (0)191 516 6255
VisiTech International Ltd

Unit 92
Silverbriar
Sunderland Enterprise Park (East)
Sunderland
SR5 2TQ
UK

Follow us @visitech_uk

Send an Enquiry

Fill out this field
Please enter a valid email address.
Fill out this field
Fill out this field

© 2022 VisiTech International. Website from dodio.