Email
Call
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
Contact
  • VT-iSIM
  • System Integration
  • VT-Infinity4
  • Resources
  • Applications
  • Company
  • Contact

Mimicry embedding for advanced neural network training of 3D biomedical micrographs

Posted on 16/07/2021

Authors: Artur Yakimovich, Moona Huttunen, Jerzy Samolej, Barbara Clough, Nagisa Yoshida, Serge Mostowy, Eva Frickel, and Jason Mercer

The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified datasets for rapid network evolution. Here we present a novel “mimicry embedding” strategy for rapid application of neural network architecture-based analysis of biomedical imaging datasets. Embedding of a novel biological dataset, such that it mimics a verified dataset, enables efficient deep learning and seamless architecture switching. We apply this strategy across various microbiological phenotypes; from super-resolved viruses to in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of three-dimensional microscopy datasets. The results suggest that transfer learning from pre-trained network data may be a powerful general strategy for analysis of heterogeneous biomedical imaging datasets.

doi: https://doi.org/10.1101/820076

Previous Post
Antimicrobial peptides against drug resistant Mycobacterium abscessus
Next Post
Anchoring cortical granules in the cortex ensures trafficking to the plasma membrane for post-fertilization exocytosis

Recent Posts

  • A new experimental platform facilitatesassessment of the transcriptional and chromatin landscapes of aging yeast 20/08/2021
  • Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles 16/07/2021
  • Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria 16/07/2021
  • Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions 16/07/2021
  • Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments 16/07/2021

Categories

  • Cell Biology (18)
  • Colloidal Dynamics (1)
  • Developmental Biology (10)
  • Genomics and Proteomics (3)
  • Neuroscience (3)
  • Physiology (2)

Contact us

Get in touch

sales@visitech.co.uk
+44 (0)191 516 6255
VisiTech International Ltd

Unit 92
Silverbriar
Sunderland Enterprise Park (East)
Sunderland
SR5 2TQ
UK

Follow us @visitech_uk

Send an Enquiry

Fill out this field
Please enter a valid email address.
Fill out this field
Fill out this field

© 2022 VisiTech International. Website from dodio.